Epreuve maths voic économique

EXERCICE 1 : suite d'intégrales impropres.

On considère, pour n entier naturel non nul, la fonction f_n définie sur \mathbb{R}^+ par :

$$f_n(x) = \frac{n \ln x}{n+1+nx^2}$$
 pour tout réel x strictement positif.

On définit également sur \mathbb{R}^+ la fonction h par :

$$h(x) = \frac{\ln x}{1 + x^2}$$
 pour tout x strictement positif.

- 1) Montrer que les fonctions f_n et h sont continues sur \mathbb{R}^+ et étudier leur signe.
- 2) a : Montrer que l'intégrale impropre $\int_1^{+\infty} \frac{\ln x}{x^2} dx$ est convergente et déterminer sa valeur.

b : Montrer que l'intégrale impropre $\int_1^{+\infty} h(x) \ dx$ est convergente.

Dans toute la suite de l'exercice on note alors K l'intégrale impropre : $K = \int_1^{+\infty} h(x) \ dx$.

- 3) a : Montrer, grace au changement de variable $u=\frac{1}{x}$ que $K=-\int_0^1 h(u)\ du$.
 - **b** : En déduire que l'intégrale impropre $\int_0^{+\infty} |h(x)| \ dx$ converge et est égale à 2K.
 - ${f c}$: En déduire également que l'intégrale impropre $\int_0^{+\infty} h(x) \; dx$ converge et vaut 0
- 4) a : Montrer que pour tout réel x strictement positif, $|f_n(x)| \leq |h(x)|$. En déduire la convergence de l'intégrale $\int_0^{+\infty} f_n(x) \ dx$.
 - **b**: Montrer que pour tout réel x strictement positif, $h(x) f_n(x) = \frac{h(x)}{n+1+nx^2}$.
 - c : En déduire successivement :

$$0 \leqslant \int_{1}^{+\infty} (h(x) - f_n(x)) \ dx \leqslant \frac{K}{n+1}$$

$$-\frac{K}{n+1} \leqslant \int_0^1 (h(x) - f_n(x)) \ dx \leqslant 0$$

d: Montrer que $\lim_{n \to +\infty} \int_{0}^{+\infty} f_n(x) dx = 0$.

EXERCICE 2 : calcul matriciel et algèbre linéaire.

On considère un paramètre réel m, et les matrices suivantes :

$$A_m = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2+m & 2+m \\ -2 & -2-m & -2-m \end{pmatrix}$$
 et
$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- 1) a : Montrer que A_m^2 et A_m^3 ne dépendent plus de m, et vérifier que : $A_m^3 = 2.A_m^2$.
 - b : On suppose que λ est une valeur propre de A_m et que X est un vecteur propre associé à cette valeur propre λ . Montrer que : $(\lambda^3 2\lambda^2)X = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ et en déduire que : $S_p(A_m) \subset \{0,2\}$.
- 2) Dans cette série de questions on étudie le cas m=0 et on cherche à diagonaliser A_0 .
 - a : Montrer que les réels 0 et 2 sont bien valeurs propres de A_0 .
 - b: Déterminer une base de chacun des deux sous-espaces propres de A_0 .
 - c: Montrer que A_0 est diagonalisable, et donner une matrice carrée inversible Q et une matrice diagonale $D = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \beta \end{pmatrix}$ telles que $A_0 = QDQ^{-1}$.
 - **d** : Montrer l'existence de deux réels a et b tels que $A_0^2 = aA_0 + bI_3$.
- 3) Dans cette série de questions, on suppose que le paramètre m est <u>non nul</u>. On note $\mathcal{B} = (\overline{\epsilon_1}, \overline{\epsilon_2}, \overline{\epsilon_3})$ la base canonique de \mathbb{R}^3 et f_m l'endomorphisme de \mathbb{R}^3 dont la matrice relativement à \mathcal{B} est A_m .
 - ${\bf a}$: Montrer que les réels 0 et 2 sont bien valeurs propres de f_m .
 - ${\bf b}$: Déterminer une base de chacun des deux sous-espaces propres de f_m . La matrice A_m est-elle diagonalisable?
 - c: On pose les vecteurs de \mathbb{R}^3 :

$$\overline{u} = \overline{\epsilon_1} - \overline{\epsilon_2} = (1, -1, 0)$$
; $\overline{v} = f_m(\overline{u})$; $\overline{w} = \overline{\epsilon_1} + \overline{\epsilon_2} - \overline{\epsilon_3} = (1, 1, -1).$

- Calculer \overline{v} , $f_m(\overline{v})$ et $f_m(\overline{w})$.
- **d**: Montrer que la famille $(\overline{u}, \overline{v}, \overline{w})$ est une base de \mathbb{R}^3 et former la matrice de l'endomorphisme f_m relativement à cette base.
- e : En déduire une matrice carrée inversible P_m telle que $P_m^{-1}A_mP_m=\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.
- **f**: Existe-t-il des réels c et d tels que $A_m^2 = cA_m + dI_3$?

EXERCICE 3: v.a.r. usuelles. fonctions de deux variables, optimisation.

Dans tout l'exercice n désigne un entier naturel supérieur ou égal à 2.

On considère deux variables aléatoires discrètes indépendantes X et Y telles que :

X suit une loi binomiale de paramètres n et x (notée B(n,x) avec $x \in]0,1[$).

Y suit une loi binomiale de paramètres n et y (notée B(n, y) avec $y \in]0, 1[$).

On pose alors Z la variable aléatoire discrète définie par l'égalité : Z = 2n - X - Y.

- 1) a : Déterminer l'ensemble $Z(\Omega)$ des valeurs possibles de Z.
 - \mathbf{b} : Exprimer en fonction de n, x et y les probabilités :

$$P(Z=0)$$
 : $P(Z=2n)$; $P(Z=2n-1)$; $P(Z=1)$

- 2) **a**: Donner les espérances et variances suivantes : E(X), E(Y), V(X), V(Y), et en déduire $E(X^2)$ et $E(Y^2)$.
 - b : On pose W la variable aléatoire définie par W = XYZ. Montrer que l'espérance de W est donnée par : $E(W) = n^2(n-1)xy(2-x-y)$.

3) On pose $D =]0, 1[\times]0, 1[$ et f la fonction de deux variables définie sur D par :

$$f(x,y) = xy(2-x-y)$$
 pour tout couple (x,y) de D

- **a** : Justifier que f est de classe C^2 sur D.
- b : Calculer les dérivées partielles d'ordre 1 de f, en déduire le seul point (x_0, y_0) de D (appelé "point critique") susceptible de réaliser un extremum local pour f.
- c : Calculer les dérivées partielles d'ordre 2 de f, et montrer que f admet un maximum local en (x_0,y_0) de valeur $\frac{8}{27}$.
- \mathbf{d} : Montrer que pour tout couple (x, y) de D:

$$f(x,y) - \frac{8}{27} = \frac{1}{4} \left(y - \frac{2}{3} \right)^2 \left(y - \frac{8}{3} \right) - y \left(x + \frac{1}{2}y - 1 \right)^2$$

En déduire que ce maximum local est un maximum global de f sur D.

- 4) On suppose que les variables X, Y définies plus haut représentent, en centimètres, la largeur et la longueur d'une brique, dont la hauteur Z est telle que la somme des côtés, X + Y + Z, est toujours égale à 56 cm, et de volume XYZ.
 - **a**: Quelles sont les valeurs que l'on doit donner aux paramètres x et y pour que le volume moyen de la brique soit maximal?
 - b: Montrer que ce volume moyen maximum est de 6272 cm³.